

Swiss Centre for Applied Human Toxicology Schweizerisches Zentrum für Angewandte Humantoxikologie Centre Suisse de Toxicologie Humaine Appliquée Centro Svizzero di Tossicologia Umana Applicata

Internationale PFAS-Fachtagung

Montag 24. November 2025

Graf-Zeppelin-Haus, Olgastraße 20, D-88045 Friedrichshafen, 09:30 – 15:45

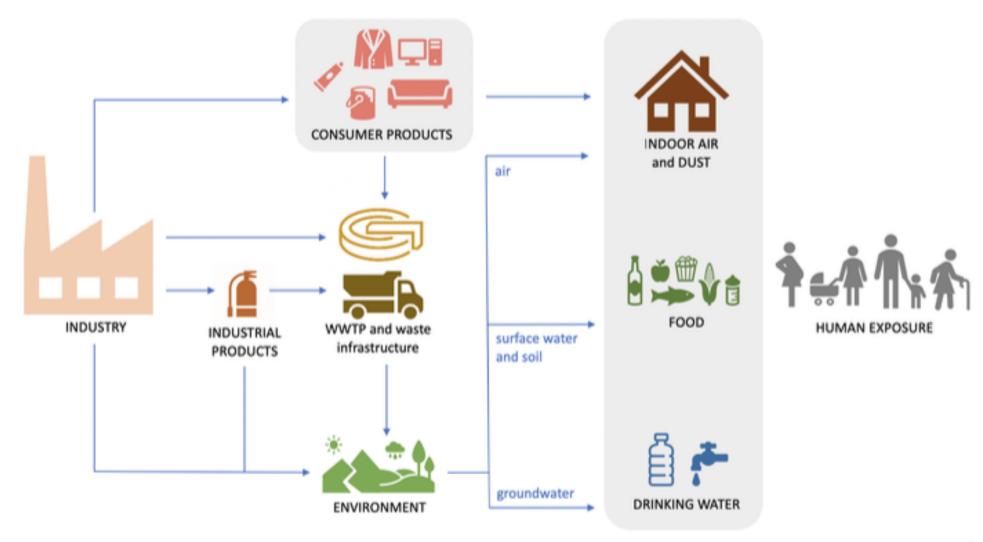
Die PFAS-Zwickmühle: Wo der Nutzen endet und die Risiken beginnen

Stand der Erarbeitung von Grenzwerten für PFAS in landwirtschaftlichen Böden

Lothar Aicher

SCAHT, Universität Basel, Missionstrasse 64, CH-4055 Basel

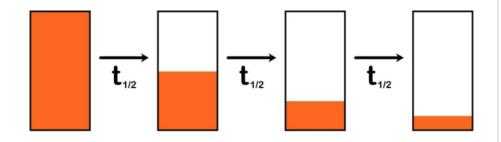
lothar.aicher@unibas.ch



Was ist das Problem mit PFAS?

PFAS – Alleskönner mit Schattenseiten

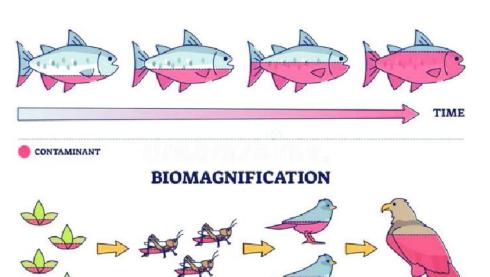
Freisetzung in die Umwelt bei Produktion, Nutzung und Entsorgung



PFAS – Anreicherung in jedem einzelnen Organismus

und Zunahme der Konzentration entlang der gesamten Nahrungskette

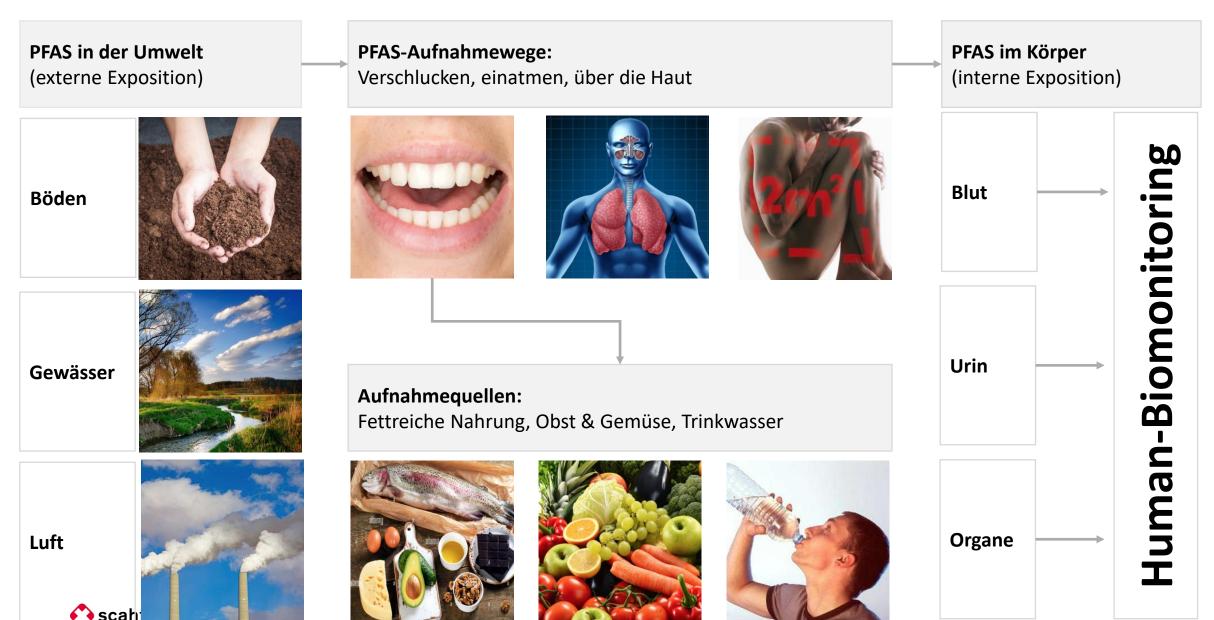
PFAS sind chemisch inert


- → Starke C-F-Bindung
- → Kaum biologisch, (photo)chemisch, physikalisch abbaubar
- → Lange Verweildauer

Umweltverhalten

- → Anreicherung im Boden, Wasser, Sediment
- → Aufnahme durch Organismen (Bioakkumulation)
- → Konzentrationszunahme entlang der Nahrungskette (Biomagnifikation)

BIOACCUMULATION



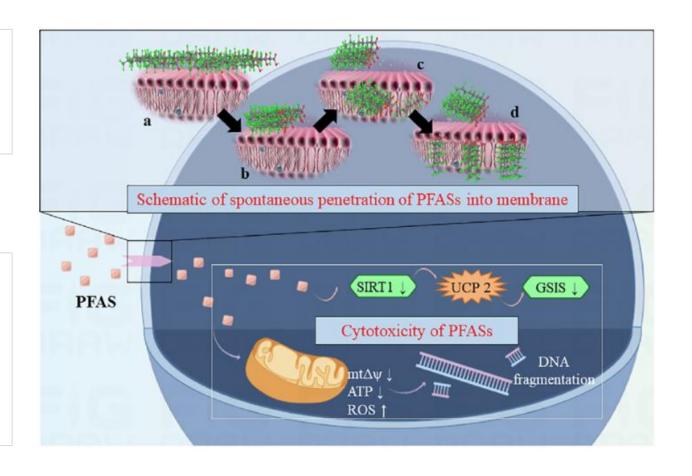
Wie nehmen wir PFAS auf?

PFAS – Umweltbelastung ist eine indirekte Gefahr für den Menschen

Nahrung als Hauptaufnahmequelle

Wie schädlich sind PFAS für den Menschen?

PFAS – chemisch inert


aber biologisch aktiv und systemisch wirksam

Bindung an Proteine (z.B. Albumin)

- → Verteilung über das Blut
 - → Wirkung im ganzen Körper

z. T. strukturelle Ähnlichkeit mit Bestandteilen der Zellwände

- → Bindung an Zellmembranen und Rezeptoren
 - → Aktivierung von Transkriptionsfaktoren
 - → Veränderung der Genaktivität
 - → Stoffwechsel, Hormonhaushalt, ...

Kein direkter Erbgutschaden und kaum akute Toxizität

aber zahlreiche Krankheitsrisiken nach längerer Exposition (speziell langkettige PFAS)

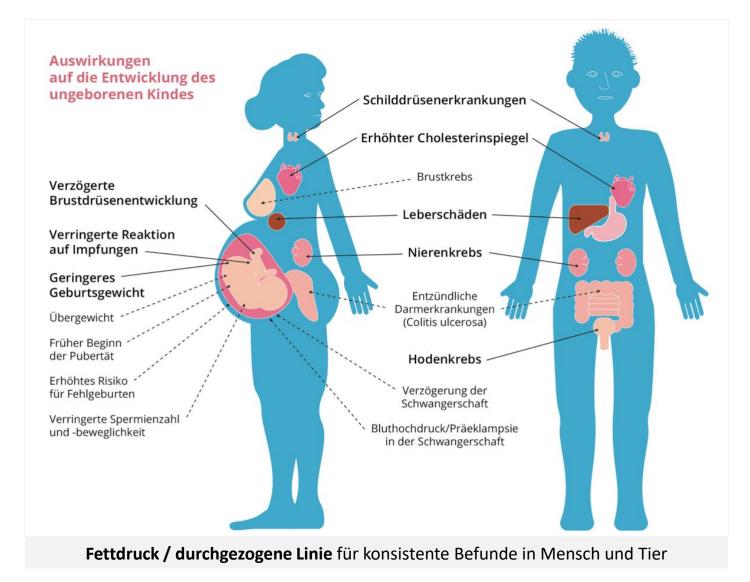
Anreicherung im Körper

Kaum Abbau, langfristige Belastung $T_{1/2}$: +3 Jahre (langkettige)

Immunsystem (am empfindlichsten) Geschwächte Abwehr

Hormonsystem

Stoffwechselkrankheiten (Diabetes, Leberschäden, Schilddrüse) Entwicklungs- und Fruchtbarkeitsstörungen


Krebsrisiken

Niere, Hoden

Wirkmechanismen

Vielfältig

Für die meisten Krankheiten ungeklärt

Sind alle PFAS gleich toxisch?

PFAS - Per- und polyfluorierte Alkylverbindungen

Mehr als 4000 «Ewigkeitschemikalien» mit vielfältiger Struktur und unterschiedlichem (Umwelt)verhalten

PFAS sind mobil genug, um Gewässer zu belasten, aber gleichzeitig persistent und sorptiv genug, um Böden langfristig zu kontaminieren.

PFAS ist nicht gleich **PFAS**

Eine Stoffgruppe – tausend Gesichter: physikalisch, chemisch, biologisch und toxikologisch

Monomere PFAS

z.B.: PFOA, PFOS Perfluoroctansäure

Oligomere PFAS

z.B.: 6:2-DiPAP

6:2 Di-perfluoralkylphosphat

Polymere PFAS (Kunststoffe)

z.B.: (PTFE) Teflon®

Polytetrafluoroethylen

$$\left(\begin{matrix} F & F \\ C - C \\ F & F \end{matrix} \right)_{r}$$

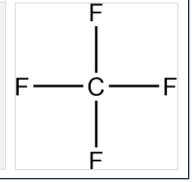
$$\left(\begin{matrix} F & F \\ C - C \\ F & F \end{matrix}\right)_{n}$$

$$\left(\begin{array}{ccc} F & F \\ C & C \\ F & F \end{array} \right)$$

Seitenketten-Polymere (SCFPs)

z.B.: Fluoracrylate, Fluorurethane

→ Abbau zu niedermolekularen PFAS

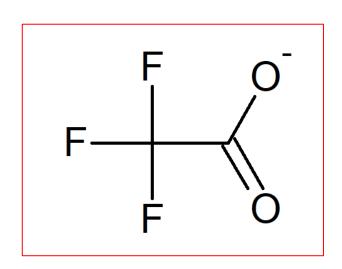

Gasförmige PFAS

z.B.: CF₄, Kältemittel, Dämmstoffe

→ PFAS als FCKW-Ersatz

(Ozonschutz)

→ aber auch PFAS als Treibhausgase (regretable substitute)


Überholt und zu kurz gedacht:

Gängige Argumente fallen in sich zusammen

Große PFAS-Polymere: Zu groß, um in Zellen zu gelangen → sind sie deshalb weniger bedenklich? Nein, Gefahr durch Bruchstücke!

$$\left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\ c & -c \\ F & F \end{smallmatrix} \right)_n \left(\begin{smallmatrix} F & F \\$$

 $\textbf{Kurzkettige PFAS: } \textit{Sehr wasserl\"{o}slich} \rightarrow \textit{werden schneller ausgeschieden} \rightarrow \textit{sind sie deshalb weniger bedenklich? Nein, Neubewertung TFA!}$

TFA: Reproduktionstoxisch?

Mai 2025: BfR legt Bewertung für neue Gefahreneinstufung vor

TFA – der einfachste PFAS-Vertreter

Industrielle Herstellung Abbauprodukt vieler PFAS, z.B. Kältemittel, Pestizide

Akute Toxizität

Ätzend bei direktem Kontakt Akute Vergiftung praktisch irrelevant

Chronische Toxizität

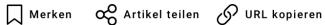
Kaum Anreicherung im Körper, wasserlöslich Schnelle Ausscheidung → geringe Toxizität

BfR legt Bewertung für neue Gefahreneinstufung vor

Wahrscheinlich Reprotoxisch (Kat. 1B, Tierversuch) Gefahrenhinweisen H360Df

Gesundheitsrisiko

Derzeit nicht zu erwarten Effekte im Tier erst bei hohen Konzentrationen Bundesinstitut für Risikobewertung | TFA


Presseinformationen

26.05.2025 / Nr. 13/2025

Trifluoressigsäure (TFA): Bewertung für Einstufung in neue Gefahrenklassen vorgelegt

Deutsche Behörden bewerten TFA als fortpflanzungsgefährdend, sehr persistent und sehr mobil

Darum geht es:

Die Bundesstelle für Chemikalien (BfC) an der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA) ist die zuständige Behörde in Deutschland für die europäische Chemikalienverordnung REACH und die CLP-Verordnung zur Einstufung und Kennzeichnung gefährlicher Stoffe. In Zusammenarbeit mit dem Umweltbundesamt (UBA) und dem Bundesinstitut für Risikobewertung (BfR) hat die BfC entsprechendes Dossier nach der CLP-Verordnung zur Harmonisierung der Gefahreneinstufung von Trifluoressigsäure (TFA) bei der Europäischen Chemikalienagentur (ECHA) eingereicht. TFA zählt zur Gruppe der per- und polyfluorierten Alkylverbindungen (PFAS). Da der Stoff nach Einschätzung der deutschen Behörden fortpflanzungsgefährdende (reproduktionstoxische) sowie umweltkritische Stoffeigenschaften besitzt, ist er entsprechenc einzustufen. Derzeit laufen Konsultation und fachliche Bewertung des deutschen Vorschlages.

Grundsatz der Risikobeurteilung

Das Gesundheitsrisiko besteht aus zwei unabhängigen Komponenten

eines Gesundheitsrisikos

Gefahrenpotential x Exposition = Risiko
Giftigkeit Aufnahmemenge
substanzspezifisch situationsspezifisch

Möglichkeit Wahrscheinlichkeit

eines Gesundheitsrisikos

Unterschied Möglichkeit und Wahrscheinlichkeit

Gewinnwahrscheinlichkeit: 6 Richtige plus Superzahl: 1 zu 139'838'160

Das Gesundheitsrisiko besteht aus zwei Komponenten

Fall 1: «Chemikalie» sehr giftig, aber Exposition sehr klein

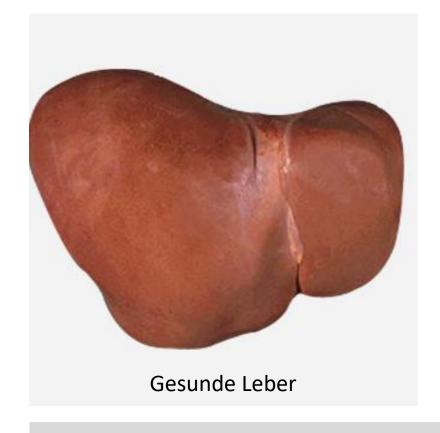
Gefahrenpotential x Exposition = Risiko

Kein Gesundheitsrisiko solange keine Radioaktivität austritt

Das Gesundheitsrisiko besteht aus zwei Komponenten

Fall 2: Chemikalie weniger giftig, aber Exposition hoch

Gefahrenpotential x Exposition = Risiko



Gesundheitsrisiko bei übermässigem Alkoholmissbrauch

Das Gesundheitsrisiko besteht aus zwei Komponenten

Fall 2: Chemikalie weniger giftig, aber Exposition hoch

Gefahrenpotential x Exposition = Risiko

Gesundheitsrisiko bei übermässigem Alkoholmissbrauch

Wie schützen wir uns?

Gesundheitsbasierte Richtwerte

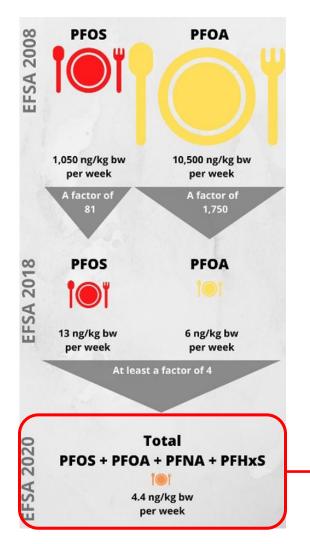
AUF IMMER UND EWIG

PFAS - Belastung

Lange Evidenz, späte Konsequenz

2020er: EC-Vorschlag Komplett-Verbot

- → Verschärfung und Ausweitung der Grenzwerte! e.g EFSA 2021
- → Wesentliche Verwendungszwecke «Essential uses»?
- → Ersatzstoffe «no regrettable subsitutes»?



2023: The Devil they Knew: Chemical Documents Analysis of Industry Influence on PFAS Science DOI: https://doi.org/10.5334/aogh.4013

Grenzwerte im Wandel – niedrigere Werte für mehr PFAS und neue Zielorgane

PFAS schaden bereits in sehr niedrigen Konzentrationen der Gesundheit!

EFSA, 2020 Grenzwert zum Schutz vor Immuntoxizität bei Säuglingen

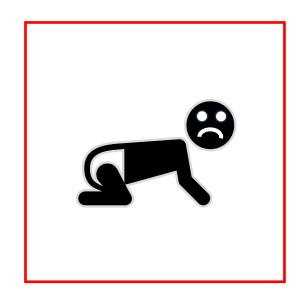
■ **∑ 4 PFAS: PFOA**, PFNA, PFHxS, **PFOS**;

Annahme: Alle vier PFAS gleich toxisch

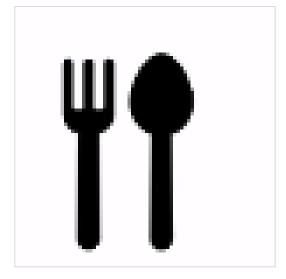
■ **Year Year Year**

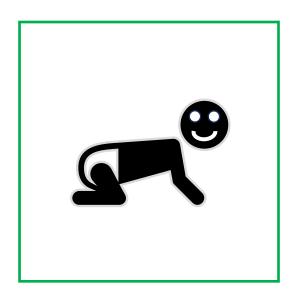
von Kindern bzw. Erwachsenen in EU/DE

■ \sum 4 PFAS: TWI = 4,4 ng/kg/KG (TWI: Tolerable Weekly Intake)


schützt selbst empfindlichste Personen / Immunsystem der Säuglinge

Brunn et al., 2023




Herleitung Grenzwert: EFSA 2021

Damit die Muttermilch den Säugling nicht schädigt, darf die Mutter nicht zu viel PFAS aufnehmen

Immunschwäche des Säuglings

Ab einer PFAS-Konz. im Blut: > 17,5 Nanogramm/ml

Voraussetzung!

PFAS-Konz. im Blut der Mutter: **6,9 Nanogramm/ml**

Grenzwert?

Unschädliche Exposition der stillenden Mutter?

Tolerierbare wöchentliche Aufnahmemenge (TWI):

4,4 ng/kg Körpergewicht/Woche

Schutz des Säuglings

PFAS-Konz. im Blut: < 17,5 Nanogramm/ml

Human-Biomonitoring

Wir nehmen mehr PFAS über die Nahrung auf, als gesund ist - besonders die Kinder

EFSA

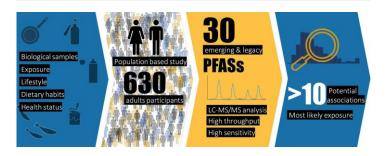
Expositionsabschätzungen für Europa

Exposition Erwachsene

- 3 22 ng/kg KG / Woche (unterer Bereich)
- 9 70 ng/kg KG 7Woche (95. Perzentil)

Exposition Kinder

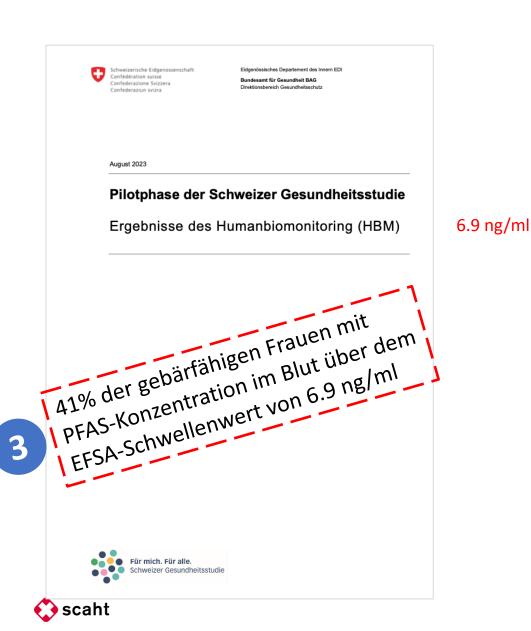
Doppelt so hoch wie bei Erwachsenen

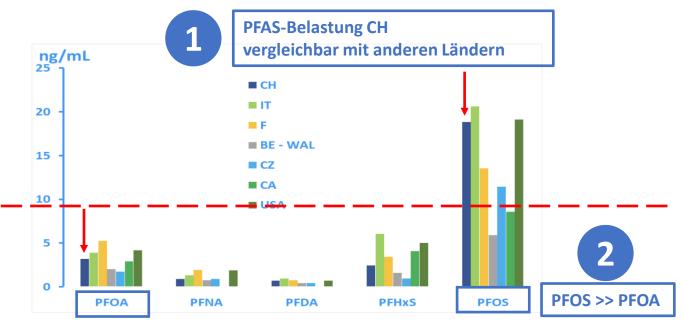

Mehr Essen pro kg Körpergewicht

Gesundheitsrisiko, weil

Diätische Exposition > 4,4 ng/kg KG / Woche (TWI)

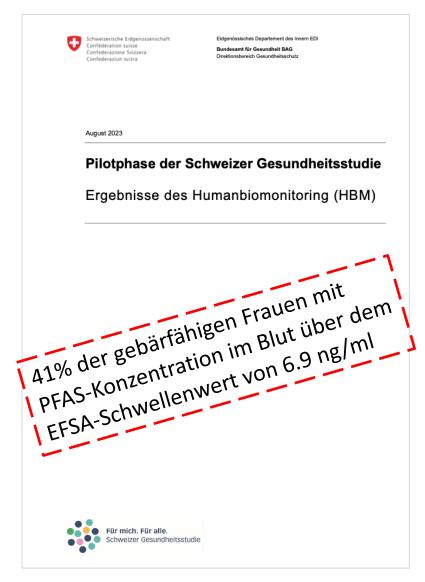
SchweizerGesundheitsstudie




https://www.sciencedirect.com/science/article/pii/S0160412025001333

Human-Biomonitoring-Daten aus der Schweiz

41% der gebärfähigen Frauen mit PFAS-Konzentration im Blut über dem EFSA-Schwellenwert


P95-Konzentrationen von PFAS im Blutserum aus der Pilotstudie (CH) im Vergleich mit P95 für Italien (IT), Frankreich (F), Belgien/Wallonien (BE WAL), Tschechien (CZ), Kanada (CA) und Vereinigte Staaten von Amerika (USA)

Substanz	Median [ng/mL]	95. Perzentil [ng/mL]	HBM-I-Wert [ng/mL]	HBM-II-Wert [ng/mL]	Anteil Proben oberhalb HBM-II [%]
PFOA	1,3	3,2	2	10	0
PFOS	6,1	18,8	5	20	3,6

PFOA und PFOS in Blutserum: Vergleich Median und 95. Perzentil der Schweizer Pilotstudie mit HBM-I und HBM-II Werten

Wir nehmen mehr PFAS über die Nahrung auf, als gesund ist - besonders die Kinder

Offene Fragen zur klinischen Relevanz, moderater Veränderungen von Krankheitsindikatoren

Verringerte Immunantwort: nur eine unerwünschte Wirkung?

Sind Kinder häufiger oder schwerer krank? Was bedeutet das für Erwachsene?

Kompensation durch Erhöhung der Impfdosis möglich?

Wie schützen wir uns vor PFAS?

Lebensmittelhöchstgehalte

Seit 2024 gelten in der Schweiz EU-Harmonisierte Höchstgehalte für PFAS in tierischen Lebensmitteln Aus gesundheitlicher Sicht müssten die Höchstgehalte tiefer liegen (EFSA TWI)

Unterschiedliche Höchstgehalte je nach Lebensmittel und Verzehrhäufigkeit

Größere/ältere, fettreiche Fische sind stärker mit PFAS belastet als kleine Fische

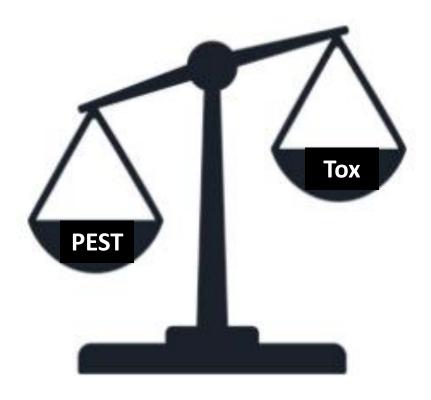
→ Grenzwerte je nach Fischart / Lebensmittelart

Wir essen weniger Fisch als Fleisch

→ Fisch darf stärker belastet sein als Fleisch.

Höchstgehalte für :

PFNA, PFOS, PFHxS, PFOA


(Einzelstoffe + Summe):

 $0.2 \mu g/kg$ bis $50 \mu g/kg$

Zwischen Risiko und Realität

Wie Grenzwerte und Rückstandsgehalte ausgehandelt werden

PEST: Politische, Ökonomische, Sozioökonomische und Technische Faktoren beeinflussen die Regulierung

Definition von Schadstoffgrenzwerten in Lebensmitteln

Nur Produkte mit den höchsten PFAS-Belastungen (obersten 5%) sind nicht mehr verkehrsfähig

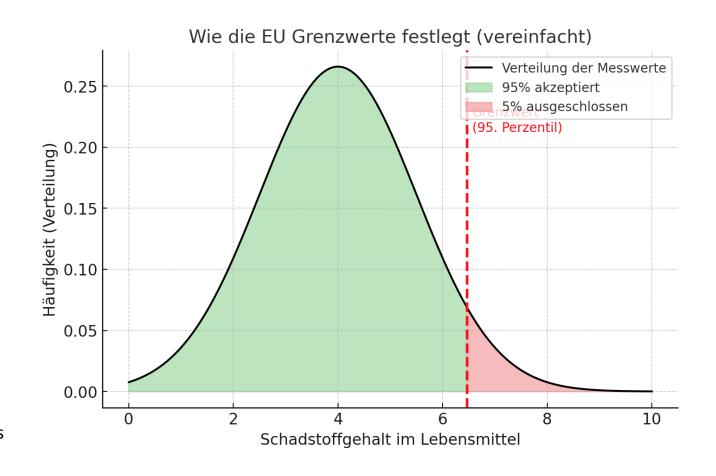
Wissenschaftliche Empfehlungen

z. B. EFSA TWI

Daten sammeln

→ Messungen von Schadstoffen in vielen Lebensmitteln

Verteilung anschauen


→ man sieht, wie hoch die Werte typischerweise sind

Grenzwert setzen

→ ungefähr beim **95. Perzentil**

Ergebnis

→ 95 % der Produkte bleiben im Handel, 5 % müssen raus

http://agrinfo.eu/book-of-reports/eu-contaminants-maximum-levels-explained/pdf/

Definition von Schadstoffgrenzwerten in Lebensmitteln

Minimierung der Auswirkungen auf den Handel

THE LATEST ON EU AGRI-FOOD POLICIES IMPACTING LOW-INCOME & MIDDLE-INCOME COUNTRIES

EU legislation on contaminants - maximum levels explained

Published by AGRINFO on 29 Nov 2022

Summary of the EU's legal framework, rationale and basic principles for maximum limits for contaminants in food

Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006

Update

Background information summarising the EU's legal framework, rationale and basic principles for setting maximum limits for contaminants in food.

Background

Certain contaminants are naturally present in water, air or soil, and are carried over to food (e.g. aflatoxins, heavy metals and nitrates). The EU constantly monitors consumer exposure to contaminants in food. For the contaminants of greatest concern to EU consumers, due to either toxicity or prevalence, the EU sets maximum levels.

The legal framework for these maximum levels is established by Council Regulation (EEC) No 315/93 (basic principles) and Commission Regulation (EU) 2023/915 (maximum levels).

The levels are set "at a strict level which is reasonably achievable by following good agricultural, fishery and manufacturing practices and taking into account the risk related to consumption of the food". Where contaminants are genotoxic carcinogens, or where current exposure is close to or exceeds the tolerable intake, "maximum levels should be set at a level which is as low as reasonably achievable (ALARA)". For infants and young children, the EU aims to establish "the lowest maximum levels, which are achievable through a strict selection of the raw materials used" [recital (2) of Regulation 2023/915.

Levels are set on the basis of scientific advice provided by EFSA, taking into account data on the occurrence of contaminants in foodstuffs from various origins. In practice, the maximum level will be typically set at around the 95th percentile of the collected occurrence data "in order to ensure a rejection rate of 5% or lower"; as a result of this approach, the effect on trade is anticipated by the EU to be limited (WTO G/SPS/R/105).

EU legislation on contaminants - maximum levels explained

Copyright © COLEAD 2025, AGRINFO is funded by the European Union and implemented by COLEAD.

COLEAD
Page 1 of 4

"Die Grenzwerte werden auf Grundlage wissenschaftlicher Empfehlungen der EFSA festgelegt, wobei Daten zum Vorkommen von Kontaminanten in Lebensmitteln unterschiedlicher Herkunft berücksichtigt werden. In der Praxis wird der Höchstgehalt typischerweise beim 95. Perzentil der erhobenen Vorkommensdaten angesetzt, um eine Ablehnungsquote von höchstens 5 % sicherzustellen. Die EU geht daher davon aus, dass die Auswirkungen auf den Handel gering bleiben."

Levels are set on the basis of scientific advice provided by EFSA, taking into account data on the occurrence of contaminants in foodstuffs from various origins. In practice, the maximum level will be typically set at around the 95th percentile of the collected occurrence data "in order to ensure a rejection rate of 5% or lower"; as a result of this approach, the effect on trade is anticipated by the EU to be limited (WTO G/SPS/R/105).

Trinkwasser

Geplant sind deutlich niedrigere Grenzwertvorschläge für mehr PFAS

Substanzen Höchstwert

PFOS & PFHxS, je Aktuell: 0,3 μg /l

PFOA Aktuell: 0,5 μg / l

 \sum 20 PFAS **Geplant**: 0,1 μ g / l ab etwa 2026

Verordnung des EDI über Trinkwasser sowie Wasser in öffentlich zugänglichen Bädern und Duschanlagen - Tinkwasser- und Badegewässerverordnung (TBDV)

BLV: https://www.blv.admin.ch/blv/de/home/lebensmittel-und-ernaehrung/lebensmittelsicherheit/stoffe-im-fokus/kontaminanten/per-und-polyfluorierte-alkylverbindungen-pfas.html?utm_source=chatgpt.com

Wie schützen wir uns vor PFAS?

Politische Vorstösse

Neue Analyse zeigt:

Ewigkeitschemikalien erreichen höchste politische Ebenen

Startseite > Öko > Ökologie > PFAS: Ewigkeitschemikalien im Blut von Spitzenpolitikern entdeckt

Auch deutscher Umweltminister betroffen

Ewigkeitschemikalien stecken in Spitzenpolitikern

EU-Umweltminister haben ihr Blut auf Ewigkeitschemikalien testen lassen. Bei allen wurden welche gefunden, auch beim deutschen Minister Schneider.

7.10.2025 18:03 Uhr

Geplantes umfassendes EU-weites PFAS-Verbot unter REACH

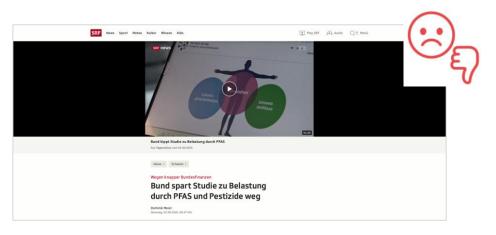
Ausnahmen mit Übergangsfristen nur wenn technische Alternativen fehlen oder der Nutzen überwiegt

2023: Vorschlag bei der ECHA eingereicht

2023–2024: Öffentliche Konsultation und wissenschaftliche Bewertung durch RAC* und SEAC*

2025: Entscheidung der EU-Kommission über den finalen Beschränkungstext (erwartet)

Ab ca. 2026/27: Stufenweise Inkraftsetzung des Verbots



^{*} Ausschuss für Risikobewertung (RAC) und sozioökonomische Analyse (SEAC)

PFAS in der Politik

Ist der politische Wille ist da?

PFAS-Verbote z.T. mit Ausnahmeregelungen und Übergangsfristen

Schweiz weitgehend harmonisiert mit EU

Substanz-gruppe (PFAS)	Global (Stockholm-Konvention)	EU (REACH / POP-Verordnung)	Schweiz ¹
PFOS und Derivate	2009	2008 bzw. 2010	2011
PFOA Salze, verwandte Stoffe	2019	2020	2021
PFHxS und Derivate	2022	2023	2022
Langkettige PFCAs (z. B. C ₉ –C ₁₄ , ggf. bis C ₂₁)	2025	2023	2022 ²
PFHxA und Derivate	_	2024	aktuell in Vorbereitung

Die 4 EFSA PFAS

sind in der CH verboten:

- PFOA
- PFOS
- PFNA(C₉-C₁₄)
- PFHxS

²PFAS in der Umwelt, Medien-Hintegrundanlass PFAS, 18 Februar 2025, Simon Liechti, BAFU

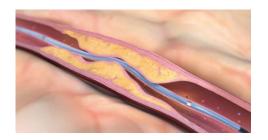
¹ https://www.bafu.admin.ch/bafu/en/home/topics/chemicals/industrial-chemicals-by-substance/per-and-polyfluoroalkyl-substances-pfass.html

Herausforderungen

Wie viele PFAS brauchen wir wirklich?

«Essentielle Verwendungen»

«Essential Uses»: Das PFAS-Dilemma in der Medizin


PFAS-Kunststoffe (Fluoropolymere) sind lebensrettend, aber eine Gefahr Mensch und Umwelt

Typische Einsatzbereiche sind:

- Katheder & Schläuche → leichtes Einführen
- Implantate und Dichtungen → Langlebige Gefässprothesen, Herzklappen, Kunstherzen, Knochenschrauben, Dichtungen und Membranen
- Antihaftbeschichtungen von OP-Werkzeugen → leicht zu reinigen, sterilisierbar
- **Drug Delivery** → gezielte Steuerung von Benetzbarkeit und Wirkstoffabgabe → kontrolliertes Freisetzen von Medikamenten / Depotwirkung

PFAS sind

- Anti-adhäsiv → Blut, Gewebe, Bakterien haften nicht an einem Implantat → keine Thrombose, leichtes Einführen von Kathedern und Schläuchen
- **Biokompatibel** → kaum Entzündungen oder Abstossungsreaktionen von Implantaten
- Chemisch stabil → reagieren nicht mit Körperflüssigkeiten oder Medikamenten
- Thermisch stabil und strahlenbeständig → sterilisierbar, geringer Verschleiss, lange Lebensdauer von Implantaten, leichtes Reinigen von OP-Werkzeug
- **Elektrisch isolierend** → für Kabel, Sensoren, ...

Muss es immer PFAS sein?

Vermeidung unnötiger "Superlösungen"

Verfügbarkeit von Alternativen für 251 PFAS-haltige Anwendungen

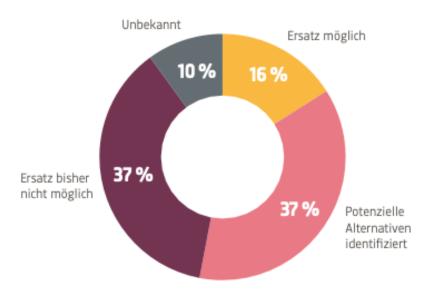


Abbildung 4: Ersatz möglich = Eine Alternative mit gleicher Performance verfügbar. Potenzielle Alternativen identifiziert = Mehr Zeit und Informationen nötig. Ersatz bisher nicht möglich = Bisher keine Alternative identifiziert oder im frühen Entwicklungsstadium. Quelle: Figuière et al. (2024)

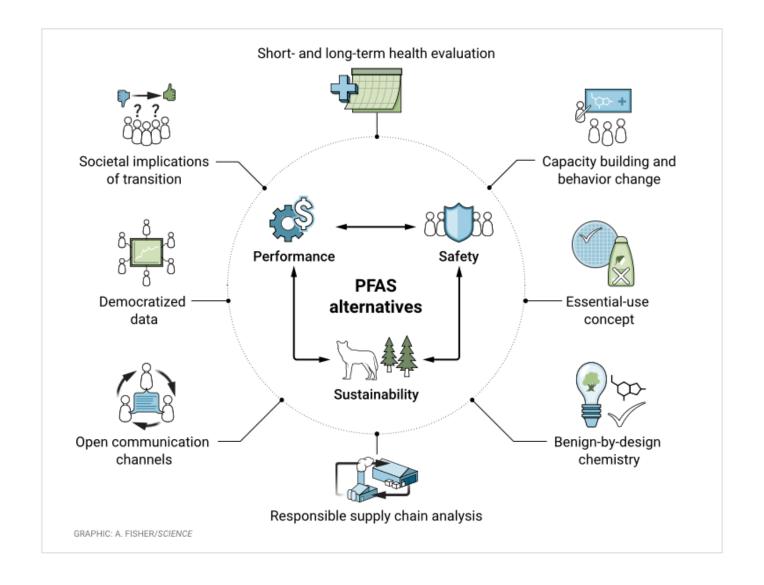
«Over Engineering» zu Lasten der Nachhaltigkeit

Systeme oder Produkte sind komplexer oder leistungsfähiger als nötig

→ höhere Kosten, Ressourcenverbrauch und Umweltbelastung

Beispiel 1: Outdoorjacken werden mit PFAS imprägniert, damit sie Öl und Chemikalien abweisen – obwohl für den Alltag eigentlich nur Wasserabweisung gebraucht wird.

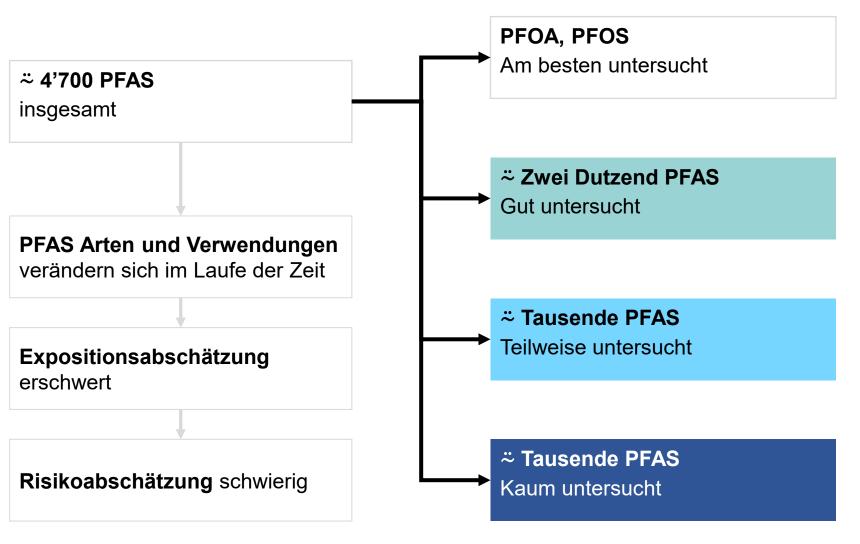
Beispiel 2: Fast-Food-Verpackungen werden PFAS-beschichtet, um auch gegen sehr heiße Öle resistent zu sein – obwohl das Risiko im Normalgebrauch gering ist.


Beispiel 3: Feuerlöschschäume mit PFAS sind extrem wirksam und langlebig, aber in vielen Einsatzszenarien wären auch weniger problematische Schaummittel ausreichend.

PFAS-Ersatz ist vor allem dort schwierig, wo eine Kombination verschiedener Eigenschaften gefordert ist.

Muss es immer PFAS sein?

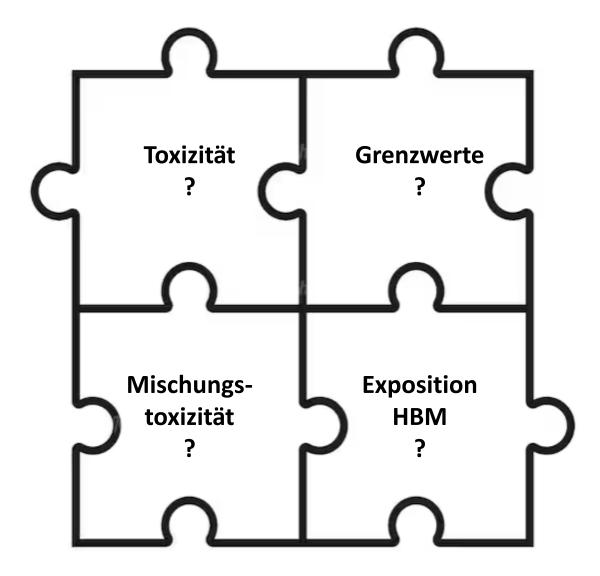
PFAS-Alternativen erfordern eine sorgfältige Abwägung von Kompromissen



Herausforderung für die Risikobewertung

😯 scaht

PFAS im Wandel – neue Stoffe & Anwendungen, unbekannte Exposition



Fazit aus humantoxikologischer Sicht

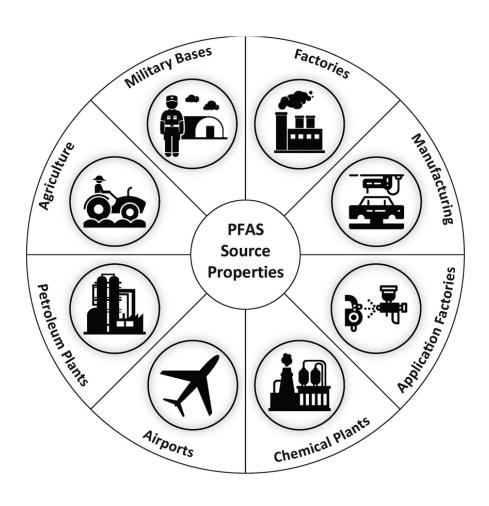
Der Erfolg der Risikominimierungsmassnahmen (Einschränkungen& Verboten) ist schwer abzuschätzen

Es fehlen:

- Toxizitätsdaten zur Ableitung von Grenzwerten (HBGV)
- Expositionsdaten zur Risikoabschätzung
- das Verständnis für die klinische Relevanz der Befunde
- Relevante epidemiologische Studien

HBM: Human Biomonitoring; **HBGV**: Health Based Guidance Values

PFAS - Sanierung aufwendig und teuer


Hotspots: PFAS-haltiges Abwasser, Abluft, Schlämme - Sanierung aufwendig und teuer

Industrie Produktion & Nutzung Papier- & Textilindustrie, Galvanik, ...

Flughäfen und Militärgelände Löschschaum

Deponien & Recyclingplätze Abfälle

Klärschlammausbringungsfläche Landwirtschaft

https://www.researchgate.net/figure/PFAS-source-properties_fig3_351503207

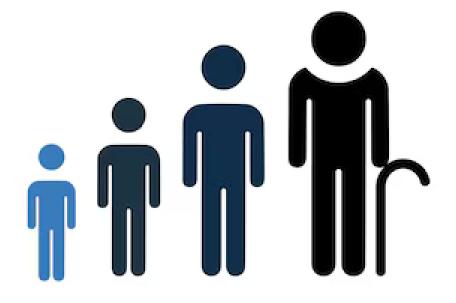
Sanierung von Wasser

Adsorption an Aktivkohle (4. Stufe ARA) Ionenaustauscherharze Membranverfahren

Sanierung von Böden

Aushub und Entsorgung
Eindämmung (Containment)
Verbrennen: > 1000 °C oder auswaschen
→ Boden unfruchtbar

Mineralisierung (Entgiftung)


$$R-CF_3 + O_2 \rightarrow CO_2 + H^+F^-$$

 $Ca^{2+} + 2 F^- \rightarrow CaF_2 \downarrow$

Fazit allgemein

Ein Generationenprojekt → Jetzt handeln, die Situation kann nicht besser werden

- Wesentliche Verwendungen «Essential uses» definieren
- Problematische Ersatzstoffe «Regrettable substitutes» vermeiden
- Entwicklung von Alternativen forcieren
- Hotspots identifizieren und sanieren

Mehr Informationen

Faktenblatt unter Beteiligung des SCAHT

 $https://portal-cdn.scnat.ch/asset/2291b60c-8b6a-5580-8dea-1d900e52b0a8/Factsheet_PFAS_D_online2.pdf?b=bf86434e-d2e8-5763-8901-f2c5e95ffa08\&v=f892498d-1443-5ec2-a008-605b5d8cd637_0\&s=SBINBc-96wbeWR03ONRGg_teC9SNhCKQtB-$

 $VphJTrPPJORBkrv13bF_81cFoe2csjS742fjRHzSfJ4l1dd3lA066Me_GqbWitNrOAks_wVDVASJ0uXruTxxorajloNkN3ZPTwUoslpEt91TxGjFrdzoGvHUkB_YupGc_uCe2-qQlabeled and the contraction of the contraction$

